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Abstract

In recent papers of Ruskuc, Saito and J. Wang, the semi-direct product of two
arbitrary monoids and a standard presentation, say P , for this product have
received considerable attention. Wang defined a trivialiser set of the Squier
complex associated with P and after that necessary and sufficient conditions
for P to be efficient have been given by Çevik. As a main result of this paper,
we give sufficient conditions for a presentation of the semi-direct product of a
one-relator monoid by an infinite cyclic monoid to be minimal but not efficient.
In the final part of this paper we give some applications of this result.
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1. Introduction

1.1. Efficiency of monoids

A monoid presentation
P = [y; s] (1)

is a pair where y is a set (the generating symbols) and each S ∈ s (a relation) is
an ordered pair (S+, S−), where S+ and S− are distinct, positive words on x.
We remark that one of S+ , S− may be the empty positive word. One usually
writes S: S+ = S− . Also it is said that P is finite if y and s are both finite.
One can define a monoid M(P) which is associated with P (in fact M(P) is
the quotient of F (y) by the smallest congruence generated by s where F (y) is
the free monoid on y). If W is a word on y then W̄ denotes the element of
M(P). Throught this paper the notation M will be used instead of M(P).

Let M be a monoid with a presentation P as in (1). Then the Euler
characteristic of P is defined by χ(P) = 1 − |y| + |s| where |.| denotes the
minimal number of elements in the set. Let

δ(M) = 1− rkZ(H1(M)) + d(H2(M)),

where rkZ(.) denotes the Z-rank of the torsion-free part and d(.) means the
minimal number of generators. Recently it has been shown by S. Pride (unpub-
lished) there exists

χ(P) ≥ δ(M).
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Then we define

χ(M) = min{χ(P): P is a finite presentation for M}.

We should remark that some authors consider, just as with the group
presentations, −|y| + |s| , and call this the deficiency of the presentation P ,
denote by def (P). The deficiency of a monoid M , denoted by def (M), is then
taken to be the minimum deficiency of any finite presentations of M . Clearly
1 + def (P) = χ(P) and 1 + def (M) = χ(M).

Definition 1.1. Let M be a monoid.

i) A presentation P0 for M is called minimal if χ(P0) ≤ χ(P), for all
presentations P of M .

ii) A finite presentation P is called efficient if χ(P) = δ(M).

iii) M is called efficient if χ(M) = δ(M).

We note that not all monoids are efficient. Thus there is interest in finding
inefficient finitely presented monoids. So we can give the following remark to
define how to show that a monoid is inefficient.

Remark 1.2. If we can find a minimal presentation P for a monoid M such
that P is not efficient then we have

χ(P ′) ≥ χ(P) > δ(M),

for all presentations P ′ defining the same monoid M . Thus there is no efficient
presentation for M , that is, M is not an efficient monoid.

One can find some examples of efficient and inefficient monoid presenta-
tions, for instance, in [1], [2], [3] and [4].

1.2. The p-Cockcroft property of monoids

Let Γ be a graph associated with P (called Squier graph) which is defined as
follows. The vertices are the elements of F (y) and the edges are the 4-tuples
e = (U, S, ε, V ) where U, V ∈ F (y), S ∈ s and ε = ±1. The initial, terminal
and inversion functions for an edge e as above are given by ι(e) = US εV ,
τ(e) = US−εV and e−1 = (U, S,−ε, V ). There is an equivalence relation ([12])
on paths in Γ. Then Γ with this relation on paths, is called the Squier complex
of P and denoted by D(P) (see, for example, in [12], [13], [16]). The elements of
D(P) can be represented by geometric configurations, called spherical monoid
pictures. These are described in detail in [12], [13] and we refer the reader these
for details. Also, as described in [12], there are certain operations on spherical
monoid pictures. Suppose Y is a collection of spherical monoid pictures over
P . Then, by [12], one can define an additional operation on spherical pictures.



Çevik OF3

Allowing this additional operation leads to the notion of equivalence (rel Y) of
spherical pictures. Then, by [13, Theorem 5.1], we say that Y is a trivialiser
of D(P) if and only if every spherical monoid picture is equivalent to an empty
picture (rel Y). Some examples and the details of the trivialiser can be found
in [3], [6], [8], [12], [13], [16] and [18].

For any monoid picture P over P and for any S ∈ s , expS(P) denotes
the exponent sum of S in P which is the number of positive discs labelled by
S+ , minus the number of negative discs labelled by S− . Moreover, for y ∈ y ,
Ly(S) denotes the length of S with respect to y .

Definition 1.3. Let P be as in (1) and let n be a non-negative integer.
Then P is said to be n -Cockcroft if expS(P) ≡ 0 (mod n), (where congruence
(mod 0) is taken to be equality) for all S ∈ s and for all spherical pictures P

over P . A monoid M is said to be n -Cockcroft if it admits an n -Cockcroft
presentation.

We remark that to verify the n -Cockcroft property holds, it is enough to
check for pictures P ∈ Y , where Y is a set of generating pictures (see [12], [13]).

The 0-Cockcroft property is usually just called Cockcroft. In practice,
we usually take n to be 0 or a prime p . The Cockcroft and p -Cockcroft
properties of monoids have received considerable attention in [3]. Also the
subjects aspherical and combinatorial aspherical have studied in [3], [5], [8,
Section 5], [9], [13, Section 7] and [14] which imply the Cockcroft and then
p -Cockcroft properties.

The following result has also recently been proved by S. Pride (unpub-
lished).

Theorem 1.4. Let P be as in (1). Then P is efficient if and only if it is
p-Cockcroft for some prime p .

1.3. The definition and a presentation of semi-direct product of
monoids

Let A , K be monoids and let θ be a monoid homomorphism

θ: A −→ End(K), a �−→ θa (a ∈ A), 1 �−→ idEnd(K)

where End(K) denotes the collection of endomorphisms of K which is itself a
monoid with identity id : K −→ K (see [7] for some examples of the monoid
endomorphisms). Then, by [15], [17] and [18], we can construct a monoid
B = K �θ A with elements (a, k) where a ∈ A and k ∈ K and product
(a, k)(a′, k′) = (aa ′, (kθa′)k′).

Let PA = [x; r] and PK = [y; s] be presentations for A and K respec-
tively. For each y ∈ y and x ∈ x , let yθx denote a fixed positive word on y such
that [yθx]K = [y]Kθ[x]A (yθx is unique modulo s). Let Tyx denotes the relator
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yx = x(yθx) and let t be the set of all relators of the form Tyx (x ∈ x, y ∈ y).
Then, by [15], [17], [18],

PB = [x,y; r, s, t] (2)

is a presentation for B .

1.4. The p-Cockcroft property of the semi-direct product of arbitrary
monoids

Throughout this section A , K will be denoted monoids with presentations
PA = [x; r] and PK = [y; s] , respectively. Also PB will be denoted a presenta-
tion of the semi-direct product of K by A , as in (2).

In [18, Section 4], paths in Squier graph Γ have been used to construct
a trivialiser set of D(PB) where Γ is associated with PB . By [12], since every
monoid picture over PB can be represented by a path in Γ then the pictures
will be used for a trivialiser set of D(PB) (see [3]) for the rest of this paper.

Let XA and XK be trivialiser sets of D(PA) and D(PK), respectively.

If W = y1y2 · · · ym is a positive word on y then for any x ∈ x , we
denote the positive word (y1θx)(y2θx) · · · (ymθx) by Wθx . If U = x1x2 · · ·xn
is a positive word on x then for any y ∈ y , we denote the positive word
(· · · ((yθx1)θx2)θx3 · · ·)θxn) by yθU , and this can be represented by a monoid
picture, say AU,y , as in Figure 1 (see also [3]).

Let S ∈ s, x ∈ x . Since [S+θx]PK
= [S−θx]PK

, there is a non-spherical
picture, say BS,x , over PK with ι(BS,x) = S+θx and τ(BS,x) = S−θx . Note
that, by the dependence on the choice of homomorphism θx , there are various
BS,x pictures which can be drawn.

Let R ∈ r, y ∈ y . Then we get non-spherical pictures AR+,y and
AR−,y , respectively, as in Figure 1. We should note that, these pictures consist
of only Tyx discs (x ∈ x). Moreover, since [yθR+ ]PK

= [yθR− ]PK
, there

is a non-spherical picture, say Cy,θR , over PK with ι(Cy,θR) = yθR+
and

τ(Cy,θR) = yθR− . We should also note that there are various Cy,θR pictures
which can be drawn for the same reason as above.

One can construct spherical monoid pictures, say PS,x and PR,y as shown
in Figure 2, by using the non-spherical pictures BS,x , AR+,y , AR−,y and Cy,θR

(see [3] for the details).

Let

C1 = {PS,x: S ∈ s, x ∈ x} and C2 = {PR,y: R ∈ r, y ∈ y}.

The proof of the following lemma can be found in [18]. In fact this lemma
is used in the proof of Theorem 1.6 below (see [4] for the details).

Lemma 1.5. Suppose that B = K �θ A is a semi-direct product with asso-
ciated presentation PB , as in (2). Let XA and XK be trivialiser sets of the
Squier complexes D(PA) and D(PK) , respectively. Then a trivialiser set of
D(PB) is

XA ∪XK ∪C1 ∪C2. (3)
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Figure 1:

Let us denote the set (3) by XB .

Theorem 1.6. Let p be a prime or 0 . Then the presentation PB , as in (2),
is p-Cockcroft if and only if the following conditions hold.

(i) PA and PK are p-Cockcroft,

(ii) expy(S) ≡ 0 (mod p) for all S ∈ s, y ∈ y ,

(iii) expS0
(BS,x) ≡

{
1, S0 = S

0, otherwise
(mod p) for all S0, S ∈ s, x ∈ x ,

(iv) expS(Cy,θR) ≡ 0 (mod p) for all S ∈ s, y ∈ y, R ∈ r,

(v) expTyx (AR+,y) ≡ expTyx (AR−,y) (mod p) for all R ∈ r, y ∈ y and x ∈ x .

2. The p-Cockcroft property of the semi-direct products of
one-relator monoids by infinite cyclic monoids

Let K be a one-relator monoid with a presentation PK = [y;S+ = S−] , and
let A be the infinite cyclic monoid with a presentation PA = [x; ] . Let ψ be
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Figure 2:

an endomorphism of K , as in Section 1.3. Then, by [3], the mapping x �−→ ψ
induces a homomorphism θ: A −→ End(K), and then we have a presentation

PB = [y, x;S+ = S−, t], (4)

as in (2), for the monoid B = K �θ A where t is the set of relators Tyx (y ∈ y).
Then, by Lemma 1.5, we have a trivializer set XB , as in (3). Notice that, since
PA is aspherical then, by [13], XA = ∅ . Also, for the relator S , let us assume
that ι(S+) �= ι(S−) (or τ(S+) �= τ(S−)). So, by [8], PK is aspherical, then
XK = ∅ . Moreover, since r = ∅ then C2 = ∅ . Therefore XB = C1 . Note that
we have a single PS,x picture, as in Figure 2-(a), in the set C1 since K is a
one-relator monoid.

As a consequence of Theorem 1.6, we have:

Corollary 2.1. Let p be a prime or 0 , and let K be a one-relator monoid,
with relator S say. Suppose that ι(S+) �= ι(S−) (or τ(S+) �= τ(S−)). Let B
be a semi-direct product of K by an infinite cyclic monoid A with associated
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presentation PB , as in (4). Then PB is p-Cockcroft if and only if

(a) expy(S) ≡ 0 (mod p) for all y ∈ y,

(b) expS(BS,x) ≡ 1 (mod p).

Proof. Since PA and PK are aspherical and C2 = ∅ then the conditions
(i), (iv) and (v) of Theorem 1.6 are trivial. On the other hand, the condition
(ii) gives (a) and the condition (iii) gives (b). Hence the result.

3. The main theorem

As we mentioned in Theorem 1.4, a presentation is efficient if and only if it is
p -Cockcroft, for some prime p . It follows from this result and Corollary 2.1
that the presentation PB , as in (4) is efficient if and only if there is a prime p
such that

• expy(S) ≡ 0(mod p) for all y ∈ y ,

• expS(BS,x) ≡ 1 (mod p),

in other words, if and only if

hcf (expy(S)(y ∈ y), expS(BS,x)− 1) �= 1.

In particular, PB is not efficient if

expS(BS,x) = 0 or 2.

Let d = hcf (expy(S)(y ∈ y)). The value of d will be taken to be 0 if all
exponent sums are 0 in hcf (expy(S): y ∈ y).

Our main result of this paper is the following.

Theorem 3.1. The presentation PB , as in (4), is minimal (but not effi-
cient) if

d �= 2n and expS(BS,x) = 2,

for any n ∈ Z
+ .

4. The preliminaries and proof of the main theorem

Let M be a monoid with the presentation P , as in (1). Let

P (l) =
⊕
S∈s

ZMeS

be the free left ZM -module with bases {eS : S ∈ s} . For an atomic monoid
picture (see [12], [13] for the details), say A = (U, S, ε, V ) where U, V ∈



OF8 Çevik

F (y), S ∈ s, ε = ±1, the left evaluation of the positive atomic monoid picture
A is defined by

eval (l)(A) = εŪeS ∈ P (l)

where Ū ∈ M . For any spherical monoid picture P = A1A2 · · ·An , where each
Ai is an atomic picture for i = 1, 2, . . . , n , we then define

eval (l)(P) =

n∑
i=1

eval (l)(Ai) ∈ P (l).

We let λP,S be the coefficient of eS in eval (l)(P), so we can write

eval (l)(P) =
∑
S∈s

λP,SeS ∈ P (l).

Let I
(l)
2 (P) be the 2-sided ideal of ZM generated by the set

{λP,S : P is a spherical monoid picture, S ∈ s}.

Then this ideal is called the second Fox ideal of P . The concept of Fox ideals
for the monoids has been discussed in [3].

Remark 4.1. If Y is a trivializer of D(P) then I
(l)
2 (P) is generated (as a

2-sided ideal) by the set

{λP,S : P ∈ Y, S ∈ s}.

We remark that one can also give the definition of the second Fox ideals
by using the free right ZM -module.

In fact we need the concept of the second Fox ideals for Theorem 4.2 below
which is recently proved by S. Pride (unpublished) and is a test of minimality
of monoid presentations. We remark that the group presentation version of this
theorem can also be found in [10] and [11].

Let ψ be a ring homomorphism from ZM into the ring of all k × k
matrices over a commutative ring L with 1, for some k ≥ 1, and suppose
ψ(1) = Ik×k .

Theorem 4.2. Let Y be a trivializer of D(P) . If ψ(λP,S) = 0 for all
P ∈ Y, S ∈ s then P is minimal.

It is clear that the above theorem can be restated by if there is a ring

homomorphism ψ as above such that I
(l)
2 (P) is contained in the kernel of ψ ,

then P is minimal.

At the rest of the paper K will be denote a one-relator monoid with a
presentation PK = [y;S+ = S−] and A will be denote the infinite cyclic monoid
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with a presentation PA = [x; ] . Also B will be denote the semi-direct product
of K by A with a presentation PB , as given in (4).

Let us consider the picture PS,x , as in Figure 2-(a).

For a fixed y ∈ y , let us assume that ∂
∂y denotes the Fox derivation with

respect to y , and let ∂B

∂y be the composition

ZF (y)
∂
∂y−→ ZF (y) −→ ZB,

where F (y) is the free monoid on y. Moreover, for the relator S ∈ s , let us

define ∂BS
∂y to be

∂BS+

∂y
− ∂BS−

∂y
.

Again for a fixed y ∈ y , let us write

S+ = U0yU1y · · ·Ur−1yUr and S− = V0yV1y · · ·Vk−1yVk,

where each Ui (1 ≤ i ≤ r) and Vj(1 ≤ j ≤ k) is a word on y − {y} . Then,
for this particular y , the left evaluations of the positive atomic pictures in PS,x

containing a Tyx disc are

U0eTyx , U0yU1eTyx , . . . , U0y · · ·Ur−1eTyx ,

and the left evaluations of the negative atomic pictures in PS,x containing a
Tyx disc are

−V0eTyx ,−V0yV1eTyx , . . . ,−V0y · · ·Vr−1eTyx .

Hence, for a fixed y , the coefficient of eTyx in eval (l)(PS,x) is

U0+U0yU1+ · · ·+U0y · · ·Ur−1− (V0+V0yV1+ · · ·+V0y · · ·Vr−1) =
∂BS

∂y
. (5)

Lemma 4.3. The second Fox ideal I
(l)
2 (PB) of PB is generated by the ele-

ments

1− x̄(eval(l)(BS,x)) and
∂BS

∂y
(y ∈ y).

Proof. Since D(PB) has a trivialiser XB consisting of the single picture

PS,x , we need to consider eval (l)(PS,x). We have

eval (l)(PS,x) = λPS,x,SeS +
∑
y∈y

λPS,x,Tyx eTyx ,

where

λPS,x,S = (1− x̄(eval (l)(BS,x))) and λPS,x,Tyx =
∂BS

∂y
(y ∈ y) by (5).

Thus, by Remark 4.1, we get the result.
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Let
aug : ZB −→ Z, b �−→ 1

be the augmentation map. By the meaning of this, we have the following lemma.

Lemma 4.4.
aug(eval (l)(BS,x)) = expS(BS,x).

Proof. We can write

eval (l)(BS,x) = ε1W1eS + ε2W2eS + · · ·+ εnWneS ,

where εi = ±1 and the Wi ’s are certain words on y (1 ≤ i ≤ n). In the above
expression, each term εiWieS corresponds to a single S -disc. Also, the value of
each εi gives the sign of this single S -disc. Therefore the sum of the εi ’s, that
is, aug(eval (l)(BS,x)) must give the exponent sum of the S -discs in the picture
BS,x , as required.

The proof of the following lemma can be found in [3].

Lemma 4.5.

aug

(
∂BS

∂y

)
= expy(S) (y ∈ y).

Now we can prove our main theorem as follows.

Suppose that d is not equal to 2n (n ∈ Z
+ ). Let

Zd =

{
Z d = 0

Z (mod d) d �= 0
.

Suppose also that expS(BS,x) = 2.

Let us consider the homomorphism from B onto the infinite cyclic monoid
generated by x , defined by

y �−→ 1(y ∈ y), x �−→ x.

This induces a ring homomorphism

γ: ZB −→ Z[x].

Note that the restriction of γ to the subring ZK of ZB is just the augmentation
map

aug : ZK −→ Z.

Thus, by Lemmas 4.4 and 4.5, the image of I
(l)
2 (PB) under γ is the ideal of

Z[x] generated by

1− x̄(expS(BS,x)) = 1− 2x̄, expy(S)(y ∈ y).
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Let η be the composition of γ and the mapping

Z[x] −→ Zd[x], x �−→ x, n �−→ n̄(n ∈ Z),

where n̄ is n (mod d). Then, since expy(S) ≡ 0 (mod d)(y ∈ y), we get

η(I
(l)
2 (PB)) = 〈1− 2̄x̄〉

= I, say.

Lemma 4.6.
I �= Zd[x].

Proof. For simplicity, we shall replace x̄ by x and 2̄ by 2. Thus we have
I = 〈1− 2x〉 . Then

〈1− 2x〉 = {p(x)(1− 2x): p(x) ∈ Zd[x]}. (6)

Suppose that 〈1−2x〉 = Zd[x] or equivalently, 1 ∈ I . So, 1 = (1−2x)p(x)
for some polynomial p(x) ∈ Zd[x] . Write p(x) = a0 + a1x + a2x

2 + · · · + arx
r

where a0, a1, a2, . . . , ar ∈ Zd . Then

1 = a0 + (a1 − 2a0)x+ (a2 − 2a1)x
2 + · · ·+ (ar − 2ar−1)x

r − 2arx
r+1.

Thus a0 − 1 ≡ 0 (mod d), a1 − 2a0 ≡ 0 (mod d), . . . , ar − 2ar−1 ≡ 0 (mod d)
and −2ar ≡ 0 (mod d). Since d �= 1, 2n , we can choose an odd prime p
such that p | d . So, p | −ar (since p is odd then p does not divide 2,
but we know that p | d and −2ar ≡ 0 (mod d) then p | −ar ). Also, since
p | d, ar − 2ar−1 ≡ 0 (mod d) then p | −2ar−1 ⇒ p | −ar−1 . Similarly, since
p | d and ar−1−2ar−2 ≡ 0 (mod d) then p | −2ar−2 ⇒ p | −ar−2 . By iterating
this procedure, we get p | a0 . Thus, since p | d and a0 − 1 ≡ 0 (mod d) then
p | 1. But it is a contradiction. Therefore 〈1− 2x〉 �= Zd[x] , as required.

Let ψ be the composition

ZB
η−→ Zd[x]

φ−→ Zd[x]/I,

where φ is the natural epimorphism. Then ψ sends I
(l)
2 (PB) to 0, and ψ(1) =

1. In other words, the images of the generators of I2(PB) are all 0 under ψ .
That is,

ψ(1− x̄(eval (l)(BS,x))) = φη(1− x̄(eval (l)(BS,x)))

= φ(1− x̄(expS(BS,x)) since η is a ring

homomorphism and by Lemma 4.4

= φ(1− x̄2̄) since expS(BS,x) = 2

= 0,
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and, for all y ∈ y

ψ

(
∂BS

∂y

)
= φη

(
∂BS

∂y

)

= φ(expy(S)) since η is a ring

homomorphism and by Lemma 4.5

= φ(0) since expy(S) ≡ 0 (mod d)

= 0.

So, by Theorem 4.2 (Pride), PB is minimal (and so, by Remark 1.2, B is a
minimal monoid). Hence the result.

Again for simplicity, let us replace x̄ by x and 2̄ by 2.

Remark 4.7. Suppose that d = 2n(n ∈ Z
+). Then we get 1 ∈ 〈1 − 2x〉 ,

and so 〈1− 2x〉 = Zd[x] .

(To see this it is enough to show 2 ∈ I = 〈1− 2x〉 , because we certainly
have 1−2x ∈ I and if 2 ∈ I then we must have 1 ∈ I . So let us take 1−2x ∈ I .
Then, by (6), we have

2n−1(1− 2x) ∈ I ⇒ 2n−1 − 2nx ∈ I = 2n−1 ∈ I since 2nx = 0 in Zd[x] ⇒
2n−2(1− 2x) ∈ I ⇒ 2n−2 − 2n−1x ∈ I ⇒ 2n−2 ∈ I

since 2n−1 ∈ I by the above line ⇒
· · · by iterating this procedure, we get · · · ⇒ 2 ∈ I ⇒ 1 ∈ I,

as required.)

5. Some applications

In this section we will consider some examples of Theorem 3.1.

Let K be the free abelian monoid of rank 2, presented by PK =
[y1, y2; y1y2 = y2y1] , and let ψ be the endomorphism ψM of K where M

is the matrix

[
α α′

β β′

]
(α, α′, β, β′ ∈ Z

+), given by [y1] �−→ [yα1 y
α′

2 ] and

[y2] �−→ [yβ1 y
β′

2 ] (see [3, Examples 4.3.5 and 4.3.5.(a)]). Thus we have the
presentation

PB = [y1, y2, x;S, Ty1x, Ty2x], (7)

as in (4), for the monoid B = K�θA where S: y1y2 = y2y1 , Ty1x: y1x = xyα
1 y

α′

2
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Figure 3:

and Ty2x: y2x = xyβ
1y

β′

2 , respectively. Note that, by [3], the picture BS,x can
be given by Figure 3-(b). In this BS,x picture, since we have αβ′-times positive
and α′β-times negative S-discs then

expS(BS,x) = αβ′ − α′β = detM.

Thus, as a consequence of Corollary 2.1, it is easy to see that the presentation
PB , as in (7) is p -Cockcroft (for any prime p or 0) if and only if detM ≡
1 (mod p). Moreover since expy1

(S) = expy2
(S) = 0 then we get d = 0.

Thus, as a consequence of Theorem 3.1, we get

Corollary 5.1. The presentation PB , as in (7) is minimal but not efficient
if detM = 2 .
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Example 5.2. One can choose the matrix M =

[
3 1

1 1

]
. Then we get a

presentation PB , as in (7), for the monoid B = K �θ A where

S: y1y2 = y2y1, Ty1x: y1x = xy3
1y2 and Ty2x: y2x = xy1y2,

respectively. Thus, by Corollary 5.1, PB is minimal.

Let K be the one-relator monoid with the presentation PK = [y1, y2;S] ,
where S: y1y2y1 = y2y

k
1 , and let ψx be the endomorphism given by [y1] �−→ [yi1]

and [y2] �−→ [y2] , where i ∈ Z
+ (see [3, Example 4.2.16.(a)]). We then get the

presentation
PB = [y1, y2, x;S, y1x = xy i

1, y2x = xy2], (8)

as in (4), for the monoid B = K �θ A . By [3], the picture BS,x can be given
by Figure 3- (a). Notice that in the picture BS,x , expS(BS,x) = i . Then, as a
consequence of Corollary 2.1, it has been proved in [4] that the presentation PB ,
as in (8) is p-Cockcroft (for any prime p or 0) if and only if k ≡ 2 (mod p)
and i ≡ 1(mod p) and so if k = 2 and i = 1 then PB is 0-Cockcroft. But
the condition i = 1 implies that ψx is the identity map and so θ is the trivial
homomorphism. Then the presentation PB becomes a presentation

[y, x; s, yx = xy(y ∈ y)]

which presents the direct product K ×Z
+ . Thus, by [4, Example 4.3], one can

say immediately PB , as in (8) is 0-Cockcroft when k = 2 and i = 1.

Notice also that here we have expy1
(S) = 2 − k, expy2

(S) = 0. So
d = k − 2. Then, as a consequence of Theorem 3.1, we have the following
result.

Corollary 5.3. The presentation PB , as in (8) is minimal (but inefficient) if

k �= 2(2n−1 + 1) and i = 2,

where n ∈ Z
+ .

Let K be given by the presentation PK = [y1, y2;S] , where S: y
k
1y2 =

y2y
k
1 , and let ψx be the endomorphism given by [y1] �−→ [yi1] and [y2] �−→ [yj2] ,

where i, j ∈ Z
+ (see [3, Example 4.2.16.(b)] for the details). We then have a

presentation
PB = [y1, y2, x;S, y1x = xy i

1, y2x = xyj
2], (9)

as in (4), for the monoid B = K �θ A . By [3], the picture BS,x can be given
by Figure 4-(a). Notice that expS(BS,x) = ij for the picture BS,x . Thus, as a
consequence of Corollary 2.1, it has been given in [4] that the presentation PB ,
as in (9) is p-Cockcroft (for any prime p or 0) if and only if ij ≡ 1(mod p)
and, as an example of this, if i = j = 1 then PB is 0-Cockcroft. But as with
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Figure 4:

the previous example, the presentation PB becomes a presentation of the direct
product K ×Z

+ when i = j = 1 holds. Then, by [4], one can say straightaway
that the presentation PB is 0-Cockcroft.

Notice that we have expy1
(S) = expy2

(S) = 0. So d = 0. Then, as an
application of Theorem 3.1, the minimality of PB can be given as follows.

Corollary 5.4. The presentation PB , as in (9) is minimal (but inefficient) if

(i, j) = (1, 2), (2, 1).

A similar example can be given as follows.

Let K be given by the presentation PK = [y1, y2;S] , where S: y1y2 =
y2y

k
1 , and let ψx be the endomorphism given by [y1] �−→ [yi1] and [y2] �−→ [y2] ,

where i ∈ Z
+ (see [3, Example 4.2.16.(c)]). Thus we have a presentation

PB = [y1, y2, x;S, y1x = xy i
1, y2x = xy2], (10)

as in (4), for the monoid B = K �θ A . Again by [3], the picture BS,x can be
given by Figure 4-(b). We note that expS(BS,x) = i . Then, it has been proved
in [4] that the presentation PB , as in (10) is p-Cockcroft (for any prime p and
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0) if and only if k ≡ 1 (mod p) and i ≡ 1 (mod p) . Also, by [4], if i = k = 1
then PB is 0-Cockcroft. But as previously, the presentation PB becomes a
presentation of the direct product K × Z

+ when i = k = 1 holds. Therefore
one can say previously the presentation PB is 0-Cockcroft.

Clearly we have expy1
(S) = 1 − k, expy2

(S) = 0. So that d = k − 1.
Thus, again as an application of Theorem 3.1, we get the following result.

Corollary 5.5. The presentation PB , as in (10) is minimal (but ineffi-
cient) if

k �= 2n + 1 and i = 2,

where n ∈ Z
+ .
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