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EFFICIENCY FOR SELF SEMI-DIRECT
PRODUCTS OF THE FREE ABELIAN
MONOID ON TWO GENERATORS

A. SINAN CEVIK

ABSTRACT. Let A and K both be copies of the free abelian
monoid on two generators. For any connecting monoid homo-
morphism 6 : A — End (K), let D = K Xg A be the corre-
sponding monoid semi-direct product. We give necessary and
sufficient conditions for the efficiency of a standard presenta-
tion for D in terms of the matrix representation for 6. Let p be
a prime or 0. In [4], necessary and sufficient conditions were
given for the standard presentation of the semi-direct product
of any two monoids to be p-Cockcroft. We use that result to
give more explicit conditions in the special case here.

1. Introduction. Let P = [X ; r] be a monoid presentation where a
typical element R € r has the form R, = R_. Here Ry, R_ are words
on X, that is, elements of the free monoid X* on X. The monoid
defined by [X ; r] is the quotient of X* by the smallest congruence
generated by r.

We have a (Squier) graph I" = I'(X; r) associated with [X ; r|, where
the vertices are the elements of X™* and the edges are the 4-tuples
e = (U/R,e,V) where U,V € X* R € r and ¢ = 1. The initial,
terminal and inversion functions for an edge e as given above are defined
by t(e) = UR.V, 7(e¢) = UR_.V and e~ = (U, R, —¢,V). There is a
two-sided action of X* on I' as follows. If W,W € X* then, for any
vertex V of I, WWV.W = WVW (product in X*) and, for any edge
e = (UR,&,V)of I', WeW = (WU, R,s,VW). This action can be
extended to the paths in I'.

Two paths 7 and 7’ in a 2-complex are equivalent if there is a finite
sequence of paths m = mg, 7, - ,m,, = ® where for 1 < i < m the
path 7; is obtained from 7;_; either by inserting or deleting a pair ee ™!
of inverse edges or else by inserting or deleting a defining path for one of
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the 2-cells of the complex. There is an equivalence relation, ~, on paths
in T which is generated by (ey.c(e2))(7(e1).e2) ~ (¢(e1).e2)(e1.7(ez)) for
any edges e; and e of I'. This corresponds to requiring that the closed
paths (eq.¢(e2))(T(e1).e2)(ep .7(e2))(¢(e1).€5 1) at the vertex t(eq)e(es)
are the defining paths for the 2-cells of a 2-complex having I' as its
1-skeleton. This 2-complex is called the Squier complex of P and
denoted by D(P), see, for example, [9, 14, 15, 19]. The paths in
D(P) can be represented by geometric configurations, called monoid
pictures. Monoid pictures and group pictures have been used in several
papers by Pride and other authors. We assume here that the reader is
familiar with monoid pictures. See [9, Section 4], [14, Section 1] or [15,
Section 2]. Typically, we will use the following Euler Fraktur font, e.g.
A, B, ¢ P, as notation for monoid pictures. Atomic monoid pictures
are pictures which correspond to paths of length 1. Write [|U, R, ¢, V]
for the atomic picture which corresponds to the edge (U, R, e, V) of the
Squier complex. Whenever we can concatenate two paths 7 and 7’
in I to form the path 77/, then we can concatenate the corresponding
monoid pictures 8 and B’ to form a monoid picture PP’ corresponding
to w’. The equivalence of paths in the Squier complex corresponds to
an equivalence of monoid pictures. That is, two monoid pictures B
and P’ are equivalent if there is a finite sequence of monoid pictures
B = PBVo,B1, * , Pm = P’ where, for 1 < i < m, the monoid picture
B; is obtained from the picture §B;_; either by inserting or deleting
a subpicture AA~! where 2 is an atomic monoid picture or else by
replacing a subpicture (2..(98))(7(2().%) by («(A).8)(>A.7(2B)) or vice
versa, where 2 and B are atomic monoid pictures.

A monoid picture is a spherical monoid picture when the correspond-
ing path in the Squier complex is a closed path. Suppose Y is a collec-
tion of spherical monoid pictures over P. Two monoid pictures P and
P’ are equivalent relative to Y if there is a finite sequence of monoid
pictures B = Bo, B, -+, By = P’ where, for 1 < i < m, the monoid
picture B3; is obtained from the picture 3;,_; either by the insertion,
deletion and replacement operations of the previous paragraph or else
by inserting or deleting a subpicture of the form W.9).V or of the form
WLV where W,V € X* and 2 € Y. By definition, a set Y of
spherical monoid pictures over P is a trivializer of D(P) if every spher-
ical monoid picture is equivalent to an empty picture relative to Y. By
[15, Theorem 5.1], if Y is a trivializer for the Squier complex, then the
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elements of Y generate the first homology group of the Squier com-
plex. The trivializer is also called a set of generating pictures. Some
examples and more details of the trivializer can be found in [3, 6, 10,
14, 15, 19] and [20].

For any word W on X and = € X, we use the notation L(WW) for the
length of W and the notation L, (W) for the length of W with respect
to z, the number of occurrences of x in W. If Ry = R_ is a relator R
in r, then exp,(R) is defined by exp,(R) = L,(R+) — L,(R_).

For any monoid picture 8 over P and for any R € r, expr(‘P)
denotes the exponent sum of R in P which is the number of positive
discs labeled by R;, minus the number of negative discs labeled by
R_. For a nonnegative integer n, P is said to be n-Cockcroft if
expr(P) = 0: (mod n), where congruence (mod 0) is taken to be
equality, for all R € r and for all spherical pictures B over P. Then
a monoid M is said to be n-Cockcroft if it admits an n-Cockcroft
presentation.

We note that to verify the n-Cockcroft property, it is enough to check
for pictures P € Y, where Y is a trivializer, see [14, 15]. The 0-
Cockceroft property is usually just called Cockcroft. In general we take
n to be equal to 0 or a prime p. Examples of monoid presentations with
Cockeroft and p-Cockeroft properties can be found in the author’s thesis
(3]

In group theory, the homological concept of efficiency has been widely
studied. In [2], Ayik, Campbell, O’Connor and Ruskuc, defined
efficiency for finite semi-groups and hence for finite monoids. The
following definition for not necessarily finite monoids follows [3] and
is equivalent to the definition in [2] when the monoids are finite. For
an abelian group G, rk3(G) denotes the 3-rank of the torsion free part
of G and d(G) means the minimal number of generators of G. Suppose
that P = [x; 1] is a finite presentation for a monoid M. Then the Euler
characteristic, X(P) is defined by x(P) = 1 — |x| + |r| and 6(M) is
defined by §(M) = 1—rk3(H1(M))+d(Hz2(M)). In unpublished work,
Pride has shown that X(P) > §(M). With this background, we define
the finite monoid presentation P to be efficient if X(P) = §(M) and we
define the monoid M to be efficient if it has an efficient presentation.
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The following result is also an unpublished result by Pride. We
will use this result rather than making more direct computations of
homology for monoids. Kilgour and Pride prove the analogous result
for groups in [12] and credit an earlier proof by Epstein, [8].

Theorem 1.1. Let P be a monoid presentation. Then P is efficient
if and only if it is p-Cockcroft for some prime p.

The definition for the semi-direct product of two monoids can be
found in [3, 13, 17, 18] or [20]. Our presentation below for this semi-
direct product can be found in [3, 17, 18] or [20]. Let A and K be
monoids with associated presentations P4 = [X ; r] and Px = [Y; s],
respectively. Let D = K xg A be the corresponding semi-direct
product of these two monoids where 6 is a monoid homomorphism
from A to End (K). (Note that the reader can find some examples of
monoid endomorphisms in [7].) The elements of D can be regarded as
ordered pairs (a, k) where a € A, k € K with multiplication given by
(a,k)(d', k') = (ad’, (kB4 )k'). The monoids A and K are identified with
the submonoids of D having elements (a,1) and (1, k), respectively.
We want to define standard presentations for D. For every x € X
and y € Y, choose a word, which we denote by y#,, on Y such
that [yf.] = [y]0[) as an element of K. To establish notation, let
us denote the relation yz = z(yf,) on X UY by Ty, and write t
for the set of relations T,,. Then, for any choice of the words y0,,
Pp =[X,Y ; r, s, t] is a standard monoid presentation for the semi-
direct product D.

If W =vy1y2 - ym is a positive word on Y, then for any z € X, we
denote the word (y10.)(y20z) -+ (ymbz) by WO, T U = z129--- 2y
is a positive word on X, then for any y € Y, we denote the word
(- ((Y02,)02, )0z, -+ )02,) by ybu.

In [20], Wang constructs a finite trivializer set for the standard
presentation Pp = [X, Y ; r, s, t] for the semi-direct product D. We
will essentially follow [3] in describing this trivializer set using spherical
pictures and certain non-spherical subpictures of these.

Let W be any word on Y and « € X. By induction on n=L(W), we

define a nonspherical picture Dy, over the presentation [XUY ; t]
with ((Dw) = Wz, 7(Qw,e) = 2(W0,), expr,,Ow,e) = Ly(W)
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YOy

FIGURE 1.

and expr,,(Dw,z) = 0 for z # 2. When L(W) =1 and W =y,
let Dw, = [|1,Tyz,1,1|]. When L(W) > 1, write W = yp- -4y,
Wl:yn—l' Y291 and let :DW,;c:(yn-@W’,w)(Hla Tynwa 1; WIG.LH

Let U be any word on X and y € Y. By induction on n = L(U), we
define a non-spherical picture 2, over the presentation [X UY ; t]
with ¢(Ay,y) = yU and 7(Ayy) = U(yby). When L(U) =1l and U = z,
let Ay, = [|1,Tyz,1,1]]. When L(U) > 1, write U = 2122 - - - 2, and
U' =129+ 2,_1. Then we define Ay, to be (A y.2,) (U Dyo,,, ., )-
See Figure 1.

For y € Y and the relation Ry = R_ in r, we have the two important
special cases, Ar, , and 2Ag_ ,, of this construction.

Let S € s and z € X. Since [S;6,] = [S_0,] as elements of K,
there is a nonspherical picture over Px which we denote by B , with
t(Bsy) =540, and 7(Bg ) = S_06,.

Let R4 = R_ be a relation R € r and y € Y. Since 0 is a
homomorphism, by our definition for yf;, we have that y0r, and yOr_
must represent the same element of K. Hence there is a nonspherical
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picture over Px which we denote by €r, with «(Cg,) = yfr, and
T(QR,y) =ylr_.

We have not, at this point, made any restrictions upon the set s
of relations for the presentation of K. Hence, there may be many
different ways to construct the pictures Bg, and €g,. These pictures
must exist, but they need not be unique. The pictures 2y, and Dy,
will depend upon our choices for words y#,, but they are unique once
these choices are made.

For S €s,z€ X, Rerandy €Y, we define pictures Ps , and

SBR,y by
Pse = (11,51, 2])(Ds_2)(2-B5,) (D3, )

and

Pry = Ar, o) ([11 R, 1,90k, [)(R-).Cry) AR ) [y, R, ~1,1]]).

We note that PBr , is equivalent to

(Ary o) (Re)-Cry) (11, R, 1,y0r_[) QAR ) [y, R, ~1,1]]).

See Figure 2 for illustrations of Pg . and Pr .

Let X 4 and Xk be trivializer sets for D(P,4) and D(Pk ), respectively.
Let C1 ={Psz:5€s, z€X}tand Co ={Pr,: Rer, yc Y}

We will use the following result of Wang. See [20] for a proof.

Theorem 1.2. Suppose that the monoids A and K have respective
monoid presentations Py = [X ; r] and Pk =Y ;s]. If D=K xp A
is the semi-direct product with standard presentation Pp = [XUY ; rU
sUt] then XA UXgUC1UCy is a trivializer set for the Squier complex
D(Pp).

Several different notions of asphericity have been introduced and ex-
amined for groups, monoids and semi-groups. In this paper, we will
define a presentation for a monoid to be aspherical if every spherical
picture over the presentation is equivalent to a trivial picture. Aspher-
ical presentations are therefore Cockcroft and then p-Cockcroft. For
discussions of other forms of asphericity, see [3, 5, 9, Section 12], [10,
Section 5], [11, 12], [15, Section 7] and [16].
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Lemma 1.3. The monoid presentation [a, b; ab = ba] is aspherical.

Proof. This result follows from [1], but it can also be proved directly.
o

We will also use the following special case of the main result in [4].

Theorem 1.4. Let p be a prime or 0 and let Pp =[X UY ; {R}U
{S} Ut] be a standard presentation for the monoid semi-direct product
K %9 A where the presentations for A and for K are aspherical one-
relator presentations with relators R and S, respectively. Then the
presentation Pp is p-Cockcroft if and only if

(i) expy(S) =0 (mod p) for ally €Y,
(ii) exps(Bsz) =1 (mod p) for all x € X,
(ili) exps(€ry) =0 (mod p) for ally € Y, and
(iv) expr,, (Bry) =0 (mod p) forally,y €Y, z € X.
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Proof. Suppose that the presentation Pp is p-Cockcroft where p is
a prime or 0. Recall that Pgs, = ([|1, S, 1,xl])(Ds,,w)(x.%gé)@gi@)
where B, contains only S-discs and the subpictures Dg_ , and D5,
contain only 7Ty, discs. Reviewing the construction of Dy, we see
that expr,, (Dw,.) = Ly(W), so expr,, (Psz) = Ly(S-) — L,(S4),
which is the negative of exp,(S), by definition. Hence (i) must hold.
Furthermore, we see that exps(Ps) = 1 — exps(Bs,z) so (i) must
hold also.

Recall that Pry, = g, o) (1L R, 1 y8r, [)((R-)-Cry)AzL ) %
([ly, R, —1,1]]) where €, contains only S-discs and the subpictures
Ar, , and Ag_, contain only T,, discs. Then exps(Pr,) =
expg(€r,y), so (ili) must hold. Condition (iv) obviously must hold
because Pr , is a spherical monoid picture.

Conversely, suppose that the four conditions hold. Since the pre-
sentations for A and K are aspherical, it will suffice, by Lemma 1.3,
to show that expg(Ps.) and expg(Pr,y) are equivalent to 0, mod-
ulo p, whenever x € X, y € Y and @ is S,R or some Tj;. We
see that expr(Ps.) and epr(‘BR,y) are both always equal to 0,
while exps(Ps) = 0 (mod p) follows from the condition (ii) and
exps(PBr,y) = 0 (mod p) follows from the condition (iii). For any
word W on Y, expr,, (®w,.) = 0 if 2 # & and expr,, (Dws) =
L,(W). Since Pg, = ([|1,S,1,x\])(@sf,x)(x.%k;’ll_)(@giw) we have
expr,, (Psz) = 0 if z # 2 and expr,, (Ps) = —exp,(S). Thus,
we will have expr,, (Bs,) =0 (mod p) provided that condition (i) is
satisfied. Condition (iv) assures us that we have expr,,(Pr,) = 0
(mod p). O

2. The main result. Let both A and K be free abelian monoids
having rank 2, with respective presentations, P4 = [a, b ; ab = ba]
and Px = [¢, d ; c¢d = dc]. If we regard the elements [¢™d"|kx of K
as 1 X 2 matrices [m, n] then we can represent endomorphisms of K
by 2 x 2 matrices with nonnegative integer entries. We will represent
endomorphisms 6}, and 0 of K, respectively, by the matrices

A:{an 0412} and B:{ﬂn 512].

Q21 Q22 521 522

For the general case of the previous section, we were allowed to choose,
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for each 2 € X and y € Y, a word yf, onY with [yb.]x = [y]x0[),- In
this section, we will restrict ourselves to the following choice for these:

ch, = 1 der Oy = P gPrz
dea — Cazl dOl22 deb — 0521 dﬂ22_

For the function 6 : A — End (K) to be a well-defined homomor-
phism, we need also to require that 01,0 = 00[, or equivalently
that AB = BA. The three equations in the following lemma will be
used in the proof of our main result.

Lemma 2.1. The function 6 : A — End (K) defined by [a] — 0|4,
[b] = O is a well-defined monoid homomorphism if and only if
(i) a12821 = 21612
(ii) 11812 + 12822 = 12811 + 20312, and

(iil) ao1P11 + 22021 = 11821 + 21 B22.

Proof. This follows immediately from AB = BA. O
The main result of this paper is the following.

Theorem 2.2. Let p be a prime. Suppose that 0 : A — End (K) is
a monoid homomorphism represented by 2 x 2 matrices A and B. Let
Pp be the resulting standard presentation

[a,b,c,d;ab = ba,cd = de, ca = ac™**d**2,

da = ac®®d*??  ch = bebPr gPrz ,db= beb21 dﬁzz]

for the semi-direct product D = K xg9 A. Then Pp is p-Cockcroft if
and only if

A=1Ixs (modp) and B=Ixe (mod p).

Proof. We apply Lemma 1.3 to both P4 and Pk to argue that these
are aspherical and then we use Theorem 1.4.
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Since the relator S here is ¢d = dc, we see that condition (i) of
Theorem 1.4 is satisfied.

The following pictures &,, ,, and §gm,» Will be useful to show that
conditions (ii), (iii) and (iv) of Theorem 1.4 are satisfied.

Using induction on m and n, construct nonspherical pictures &,,
over Pk as follows, observing that ¢(&,, ) = ¢"d", 7(€, ) = d"c™
and expg(€,,,) = mn. Let €;; consist of a single S-disc. For
m > 1, let €,1 = (c.€,_11)[|1,5,1,¢™ ] and, for n > 1, let
@mm = ((@mvn_l).d)(dnil.emJ).

For ¢ > 2, m > 1 and n > 1, we define, by induction on gq,
a nonspherical picture Fgm.n over Px with «(Fgmn) = (c™d")1,

T(Fgmmn) = ¢™4d™ and exps(Fqmn) = —(1/2)g(¢ — 1)mn. As a
base step, let Fomn, = ™€l .d". Inductively, for ¢ > 2, let

Famn = ((Bg-1.mn)-cd") (™ T7™).(€ g —n)-d")-

We want to show next that the second condition of Theorem 1.4 is
satisfied if A =1 (mod p) and B =1 (mod p). Recall that we choose
B, to be a nonspherical picture over Px with «(Bg ) = (54+)8, and
T(Bsz) = (S-)0;. With our current hypotheses, we have S = cd and
S_ =de, so 1(Bgy) = (c;)(d0,) and 7(Bs,) = (dby)(chy). We will
consider only the case x = a. The case where x = b is parallel. Since
we have made the choices cf, = c*1d“*2 and df, = c*2*d*??, we need
t(Bsa) = c*11d2c*1d*>? and 7(Bg,,) = ¥ d¥?2 ¢ d*?. We will
accomplish this if we let

Bgo=(c(E 1 | 1.d*22) (™ (Cuyyam)-d12).

Q21,012

Then exps(Bga) = 110002 — agg12 = det A and whenever A = [
(mod p), we will have exps(Bg,) = 1 (mod p). Similarly, we can
always find pictures B, with exps(Bs,p) = det B, so condition (ii) of
Theorem 1.4 will always be satisfied if A =1 (modp) and B=1T
(mod p).

We consider condition (iii) of Theorem 1.4. We will discuss only
the case for €r.. The case for €r 4 is parallel. Recall that R
is ab = ba and that €. is a nonspherical picture over Px with
(€Rre) = By and T(Cr) = cbyy. Since we have made the choices
by = c11d*2, df, = c*1dv2, cf) = cPidhiz and de, = Cﬁzldﬁm,
we need to construct €g . with t(Cr ) = (cy)0p = (c*11d*12)0), =
(cOp)®11 (dBy) 12 = (Prdhz)on(cfaglz)mz and similarly, 7(€p.) =
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(c1dez)Pu(coardo2z)fiz . Define intermediate pictures €% and €%
as follows.

30&11,511,512) ( ﬁmdﬁn)alz)((Cauﬁudanﬁlz)'(gam,ﬁm,ﬂm))
C(!uﬁll ( *1 ) (dalzﬂn))

ai2f21,a11 812

(
(
(8611 011,015)- (€7 d?? )512)((00411511 =i )-(8812,01,022))
()€1 ) (420))

az1B12,a12811

= (
(
= (
(

‘We observe that

( 511d512)0111 (Cﬂmdﬁm)am

C

a11611+a12521 da11512+¢112522

0

Re) =

Re) =
Q}:—‘, ) ( allda12)ﬁ11 (Cazldazz)ﬁm

7}'2 ) 0411511-‘!-(121512da12511+0422512.
Using equations (i) and (ii) from Lemma 2.1, we see that 7(C€% ) =
7(€% ). We define €g . to be (CR.)(€F p)*l. Suppose that we have
A=1 (mod p) and B = (mod D). Then 12, ao1, Bz and B2
are all divisible by p. Since expg (&) and exps(§q,m,») are divisible
by p whenever either of m or n is divisible by p, it follows that the
Values fOI' exps(gauﬂllﬂm)? exps(salzﬂzlﬂzz)ﬂ exps(ealzﬂzhauﬁlz)ﬂ
exps(gﬂllyall1a12)7 exps(gﬁm,am,an)’ exps(@a21ﬁ127a12511) and then
exps (€ ) and exps (€% ) as well, are divisible by p and hence that
exps(€r,c) =0 (mod p).

Finally, we want to show that the fourth condition of Theorem 1.4 is
satisfied if and only if A =1 (mod p) and B =1 (mod p). Recall that
Br,y is defined by

PBry = Ar, ) (11 R, 1,908, [)(R-).Cryg) (AR (17, R, ~1,1]])

where Ty, discs occur only in g, 5 and ™Ar_ 5. It will suffice then
to show that we have expy, (ab,5) — expy,, (Upa,y) =0 (mod p), for
all z € {a,b} and all y,§ € {c,d}, if and only if A = I (mod p)
and B = I (mod p). By the definition of Ay y we have Uqpy =
([|1, Tya, 1,0]])(Dg, ») and Wpa g = ([|1, Tgp, 1, a|])(Dge,.a)- Recall also
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that for words W on {c,d}, we have expr,, (Dw.) = Ly(W) and
expr,, (Dw,z) = 0 for = # . Using these, we calculate

expr,, (Aab,c) — expr., (Rpa,c) = 1 — P11
expr,, (Uav,c) — expr,, (Apqa,c) = @11 — 1
expr,, (Aab,c) — exXpry, (Apa,c) = 0 — P2
expr,, (Aav.c) — expry, (Ape,c) = @12 — 0
expr,, (Uap,d) — expr,, (Apg,a) = 0 — B
expr,, (Aab,a) — expr,, (Apa,a) = a21 — 0
expry,, (Aab,d) — expry, (Apa,a) = 1 — B2
expry, (Aap,a) — expry, (Rpa,a) = oz — 1. o

Corollary 2.3. Suppose that 8 : A — End(K) is a monoid
homomorphism represented by 2 x 2 matrices A and B. Let Pp be
the standard presentation

[a, b, c,d;ab = ba, cd = de, ca = ac™* d*1?,

dCL — acazl dOl22 , Cb — bcﬂu dﬂu , db — bC’BZ] dﬂw]

for the semi-direct product D = K %9 A. Then Pp is efficient if and
only if there is a prime p for which A = Izxo (mod p) and B = Ioxo
(mod p).

Proof. This is an immediate consequence of Theorem 1.1 and Theo-
rem 2.2. O
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the paper.
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